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A New Method for Measurement of Complex Permittivity
of Liquids Using the Phase Information of Standing Waves

Hanbao Jiang, Mingyi Sun, and Wenjing Chen

Abstract— A new approach to determine the propagation constant,
y=a+j8, of waves on a transmission line from phase measurements is
proposed in this paper. This new method is very suitable for determining
small «. Its distinctive feature is that the attenuation constant o of
waves on the transmission line is the slope of a linear function of the
displacement of a detector. Thus the attenuation constant o can be
determined accurately even if it is very small.

1. INTRODUCTION

Variable-length liquid sample cells have been widely used to mea-
sure the complex permittivity of liquids at microwave frequencies.
Van Loon et al. [1] used the power reflected from a variable-length
liquid cell, and Stumper [2] used the power transmitted through a
variable-length inclined liquid column to obtain propagation constant.
Buckmaster er al. [3] recently reported the measurement of the
complex permittivity of high-loss liquids by measuring the phase
constant and attenuation constant of traveling waves which penetrates
a variable-length liquid column. We also made a swept-frequency
measurement of the complex permittivity of saline water by using a
slotted line [4]. in which traveling waves were established.

Thus, except for high-loss liquid conditions in which traveling
waves can easily be established. most of the previous works only
rely on the amplitude information of standing waves, ignoring the
phase information. This causes much difficulty when measuring small
«. and requires complicated mathematical processing [5]. The phase
variation of a standing wave is highly sensitive to o when it is small.
The relation between « and the phase shift on a transmission line
is relatively simple. Thus, when a is small, it can be determined
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more easily and accurately by using phase information than by using
amplitude information of a standing wave.

In this paper, we will first discuss the phase characteristics of
standing waves on a transmission line in general conditions. Based on
the phase information of standing waves. a new method for measuring
the complex permittivity of low-loss liquids will be proposed.

Preliminary experiments were performed to prove the new method,
and the results show good agreement with the theoretical values and
other experimental values. The method provides a new approach to
determine the attenuation constant when it is small. The other features
of the method include wide-band operation, simple mathematical
calculation, and compatibility with the variable-length liquid sample
cell method used now.

II. THEORY

On a uniform transmission line, in general a condition, there are
standing waves which can be described by

VsZo
Zs + ZO

where pr and ps are the complex reflective coefficient of load
and source, respectively, Z, is the characteristic impedance of the
transmission line, Z, 1s the source impedance, V. is the voltage of
the source, and ! is the length of the transmission line.

Two types of standing wave patterns will be used to determine the
propagation constant of waves on a transmission line.
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A. The Voltage Standing Wave Distribution
Between Load End and Source End

In this condition, the amplitude and phase shift of standing waves
are [6]

[V (d)| = [2Vie " /o7 |[sinh? (ad + p) + cos” (3d + q)]'/* (2a)

©(d) = tan™ " [tanh (ad + p) tan (3d + ¢)] (2b)

where
V.20
(Zs -+ ZO )(1 — prse~2w,l)

d is the distance from load end to the point where the voltage is
measured, = +d = . and p = In{|pr|) "%, ¢ = -1

Equations (2a) and (2b) explicitly show that either the amplitude
or the phase of a standing wave contains the information of the prop-
agation constant and the load. Fig. 1 shows the phase distributions
of standing waves along a transmission line. From Fig. 1, we can
see that any phase distribution of waves on a transmission line lies
between two lines: one is the straight line, representing a traveling
wave; the other is the zigzag line, representing a pure standing wave.

Furthermore. from (2b) and Fig. 1. we can see that the distance
D between the two sequential points where the standing wave phase
passes through 7/2. 37/2---(2n + 1)x/2 is exactly equal to A/2
of waves on the transmission line. So /3 is determined by 3 = =/ D.
Compared to using the amplitude information of standing waves, the
distance between two minimums of the amplitude is not exactly equal
to A/2 unless the loss of the transmission line can be ignored [5].
From (2b), we can get another form of the equation:

tan(d)
tan (3d + q)

V1=

I =od+p=tanh" { (3a)
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Fig. 1. The phase shift of standing waves on a transmission line having

different values of a/3. The solid straight line represents the linear phase
shift of traveling waves along the line, and the zigzag line represents the
step changes of the phase shift of pure standing waves. All possible phase
variations on a transmission line lie between these two lines.

tan (d) } (3b)

o= L tanh_l —_———
T d—d, tan [3(d — do)]

where L = ad + p can be regarded as the total loss on the line at
the distance d from the load end. So (3a) shows that the total loss
L on a transmission line is a linear function with the distance from
the load end. The slope of the linear function is just the attenuation
constant « to be determined and shown clearly in (3b), where d — d,,
is an incremental displacement of a probe, and do is any position
where ¢(do) = 0. So far, we have a new approach to determine the
attenuation constant of waves on a transmission line from the phase
measurement.
The variation rate of y(d) with a can be obtained from (2b)

Op(d) _ i cos p(d) sine(d) (da)
da ~ cosh{ad + p)sinh(ad + p)°
When measuring low-loss liquids, (4a) can be simplified to
8¢(d)icos w(d) sin p(d)' (db)

da o

Therefore, (4b) shows that using phase information of standing waves
is especially suitable for determining small a.

B. The Voltage Standing Wave Patterns on a Movable Load End
In this condition, (1) becomes
—nyl
vy = v LT erler T
1—prpse ™

where V = Vg Zy /( Zs+Zy). The phase shift of 17(7) on the movable
load end is

)

(6)

o) = —tan~! {M]

tanh (ol + p)

where p = In(Jprps|) "% and ¢ = —L(pr + ps). Fig. 2 shows
the phase variations on the load end when it moved along the line.
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Fig. 2. The phase variations on a movable load end when it moves along
transmission lines having different values o/ 3. All possible phase variations
on the movable load lie between two lines. One of them represents phase
linear decrease of traveling waves, the other represents phase step changes
of pure standing waves.
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Fig. 3. The experimental setup for measuring the complex permittivity of
liquids from the phase information of standing waves.

Also, from (6) and Fig. 2, the phase constant 3 can be determined
accurately by measuring these positions where (!) passes through
w, 2w, 3w, ---,nw. Again, 3 = w/D, where D is the distance
between two sequential positions mentioned above. In the same
way as in (3), we get the following equation for determining the
attenuation constant a:

_ _ 1 [tan (Bl +q)

L =ol+p=tanh {—tanq:(l) (7Ta)
B _1 [tan[B{ — lo}]

a= T tanh {_tancp(l) } (7b)

Therefore, the total loss L at the movable load is also a linear function
of the distance [. The slope of the linear function is the attenuation
constant of waves on the line, I — Iy is an incremental displacement
of the movable load, and Iy is any position where o(lo) = 0 or 7.
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TABLE I
THE COMPLEX PERMITTIVITY ¢/ AND ¢ OF DEIONIZED WATER DETERMINED FROM PHASE INFORMATION OF STANDING WAVES. THE TESTING FREQUENCY WAS 0.2 GHz
temperature a ref.  valuel®
?%) (radB/m) ® (Nep/m) g ae d A=t ¢ 4
15 37.93 0.063 0.23 0.01 81.97 0.54 1.00 0.09
25 37.12 0.072 0.19 0.01 785t 0.61 0.8 0.09 78.52 0.86
27 36.82 0.066  0.19 0.007 77.28 0.54 0.81 0.06
«. respectively, Ae’, A€’ are the measurement uncertainties (two
0.12 standard deviations) of ¢ and €”. respectively. The results show
good agreement with cole-cole theory values [7] and the experimental
.10 R=0. 991 values obtained by Stuchly and Kraszewski [8].
0. 08
IV. SUMMARY
@ 0.06 Using the phase information of standing waves, the propagation
3 constant, v = « + jf, of waves on a transmission line can be
determined more easily and accurately than by using only amplitude
o0 information of standing waves when a is small. The distinctive
feature of this new method is that the attenuation constant « is the
0.02 slope of a linear function with the displacement of a detector from an
initial position. So even if o is very small, it can also be determined
0. 00 ) . ; . . R accurately.
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dew

Fig. 4. Graph showing the total loss L as a linear function of displacement
d of a probe for determining the attenuation constant

The variation rate of (1) with o is the same as in (4). Again, we can
determine the attenuation constant of waves from phase measurement.

III. EXPERIMENTAL PROCEDURE AND RESULTS

Preliminary experiments were performed based on the standing
wave distributions between the load end and the source. The basic
experimental system shown in Fig. 3 consisted of an HP8410C
network analyzer system controlled by a microcomputer. A coaxial
slotted line was filled with deionized water to be tested, and a
nontuned, wide-band probe was used to detect both the amplitude
and phase shift of standing waves established on the slotted line.
First, the phase constant / is determined according to the distance
D between two sequential positions where the phase of the standing
wave passes through 7/2. 37/2--- (2n+ 1) /2. This can be seen on
the screen of an HP8412B because at these points the phase changes
abruptly just as in Fig. 1. Then a midpoint between two sequential
positions determined previously is selected as the starting point where
the phase is set to zero. Moving the probe from the starting position
toward the other end of the slotted line, the phase shift of standing
wave (d) in as many as possible positions and in different quadrants
is measured and stored in the computer. The attenuation constant
o is calculated as the regression coefficient using linear regression
processing. The correlation coefficient R is used as the criteria for
the measurement, and R > 0.95 was selected as a goodness in our
preliminary measurement. The frequency used was 0.2 GHz.

Fig. 4 shows the relation between the total loss L determined
experimentally on the slotted line with the displacement d from the
starting position. It clearly shows that the relation is very close to
a straight line as predicted by (3a). The correlation coefficient R is
0.991 in the experiment. Table I lists the complex permittivity of
deionized water tested by this new method at several temperatures.
The 63 and 8a in the table are the standard deviations of J and
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